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1 Abstract

This study aims to evaluate the impact of utilising different adaptive learn-
rate optimization tools on image classification tasks, as well as the effect of
new features on accuracy and computational time. The study compares the
performance of an Adam, RMSprop and AMSGrad optimizer on various image
recognition tasks (digit recognition, image classification). The study evaluates
the computational time for each optimiser as well as several benchmarks of the
model’s resultant accuracy, being the F1-Score and the mean squared error.
This study aims to compare the practical benefit of newer iterations of adaptive
learn-rate algorithms in terms of computational time and accuracy of prediction
in image classification tasks. The content of the study has been taken from
MNIST and CIFAR datasets and used to train models for all three algorithms.
The results of this study indicate that the RMSProp optimiser has a generally
higher compute speed and accuracy when compared to the Adam and AMSGrad
models.

2 Introduction

The necessity and usage of image classification algorithms is rapidly growing
in society due to the widespread commercialisation of machine vision based
products and services such as driver-less vehicles and medical image classifiers
[Cai20]. The ability to replace human vision with a machine is a crucial compo-
nent in the process of automating tedious and repetitive tasks and is achieved
through machine learning. Machine learning is a technique that uses a large cor-
pus of data to perform a specific task without receiving the explicit instruction
as to how [Mah19] - in our case, the identification or classification of objects
in images. This task is approached in various ways, one of which being a su-
pervised learning approach. It trains a model using labelled sets of data to
classify or identify objects into labels based on features [Dou13]. There ex-
ist many supervised learning algorithms to classify data into two or more labels

1



such as Logistic Regression, Support Vector Machines and Convolutional Neural
Networks [Pin21].

A classifier’s performance is dependant on various factors, with the utilised
optimiser being one of the most important. Computational power is irrelevant if
the resources are wasted on inefficient model training. The optimization of ma-
chine learning models involves navigating complex and often high-dimensional
parameter spaces. Classic optimization techniques, such as gradient descent,
have laid the groundwork for contemporary methodologies [Ros57]. The opti-
miser influences the speed the model is able to be trained and the accuracy of the
models outputs through adjustments of the models weights and biases. These
parameters are relevant as predictions in particular industrial sectors will re-
quire higher precision, such as medical image classification, whereas other fields
would require rapid computation speed. This study will measure and evalu-
ate the performance of three such optimisation algorithms: Adam, RMSProp
and AMSGrad [Kin14] [Tie12] [Red19]. As all the above optimisers are a form
of adaptive learn-rate algorithm and are built off each other, the purpose of
this paper is to evaluate the practical effectiveness of these additions on basic
and complex image classification in terms of computational time and overall
accuracy.

This paper is structured as such: Section 2 provides contextual detail for
each optimisation algorithm used. Datasets used will be standard datasets from
various types of classification tasks, namely from the Modified National Insti-
tute of Standards and Technology (MNIST) and the Canadian-based global
research organization (CIFAR). Each optimisation algorithm requires a certain
amount of hyperparameter tuning which will affect the performance of each al-
gorithm [Li16] and the effects of various degrees of hyperparameter tuning will
be demonstrated through the experiments. Section 3 will outline the results of
the study with plots and diagrams. Section 4 will discuss the results along with
potential experimental inaccuracies. Section 5 serves to conclude the study.

3 Context, Resources and Procedure

Optimization algorithms have been employed to train diverse models for a broad
spectrum of tasks. The analysis of these models is conducted using Python 3.11
utilizing hardware specifications that include a 2GHz Ryzen 7 5825U processor,
16GB RAM, and an NVIDIA GeForce RTX 3050Ti laptop GPU. In order to
provide an explanation of the basic functional principles of the optimisations
used, the fundamental of optimisation will be briefly explored.

3.1 Algorithms

3.1.1 Gradient Descent

Gradient descent serves as the foundation for many optimisation algorithms,
where it iteratively adjusts model parameters in a way that minimises the value
of a loss function. The gradient points towards the direction of the steepest
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descent of the loss value and by negating it, a parameter is guided towards said
direction of steepest descent. This is given by:

θt+1 = θt − α · ∇J(θt) (1)

Where θt represents the parameter vector at time t, α denotes the learning
rate (step size while moving towards minimum), J(θt) is the loss function, and
∇J(θt) is the gradient of the loss function [Rum86].

3.1.2 Momentum-Based Descent

Momentum-based gradient descent is an extension of the conventional gradi-
ent descent algorithm that introduces a dynamic element of momentum into
the optimisation process. The accumulated velocity from prior optimisation
iterations guides the current optimisation process, analogous to how a moving
object’s momentum in the real-world functions. This preserves the algorithm’s
so-called ’movement’, enabling swift traversal of the optimisation landscape.
Mathematically, this accumulated velocity is expressed as:

vt = γ · vt−1 + α · ∇J(θt) (2)

θt+1 = θt − vt (3)

Here, vt denotes the accumulated velocity at time t and γ represents the mo-
mentum coefficient [Pol64]]. γ is often chosen to be a value between 0 and 1,
where values close to 1 would allow for fast traversal of flat regions and values
close to 0 would dampen the effect of past velocities. Momentum-based descent
decreases the computational time spent on training.

3.1.3 Adaptive Learn-Rates

An adaptive learn-rate strategy involves dynamically altering the learning rates
for different parameters during learning. This becomes exceptionally important
when we approach non-convex, high-dimensional machine learning problems
[Dau15]. The core idea behind adaptive learn-rate is to take large steps in less
sensitive directions on the gradient and small steps in more sensitive directions.
An example of an adaptive learn-rate algorithm is the AdaDelta optimiser:

∆xt = − η√∑t
τ=1g

2
τ

· gt (4)

The parameter update at time t is updated using the equation above [Zei12].

η is the preset hyperparameter learn-rate,
√∑t

τ=1g
2
τ is the accumulated sum

of the squares of the gradients up to time t and gt denotes the loss function at
time t.
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3.1.4 Adam Optimiser

The Adam optimiser is an amalgamation of momentum-based gradient descent
and adaptive learn-rate strategies. It calculates exponential moving averages
of past gradients and past squared gradients to adaptive adjust learn-rates for
each parameter [Kin14]. It inherits the advantage of momentum-based descent
in its fast traversal of complex non-convex landscapes.

The algorithm calculates the moving average of all the gradients at time t,
mt using the exponential decay rate β1, and the squared gradients vt as such:

mt = β1 ·mt−1 + (1− β1) · gt (5)

vt = β2 · vt−1 + (1− β2) · g2t (6)

To mitigate biases approaching zero, the bias-corrected moving averages m̂t and
v̂t is computed as follows:

m̂t =
mt

1− βt
1

(7)

v̂t =
vt

1− βt
2

(8)

The parameter update rule is then created, where ϵ is a small constant to prevent
zero division from occurring:

θt+1 = θ1 −
α√
v̂t + ϵ

· m̂t (9)

The Adam method is a first-order and has low time complexity [Yi20].

3.1.5 Root Mean Square Propagation

Root Mean Square Propagation (RMSProp) is an improvement to the Adagrad
that addresses the limitations of accumulation of squared gradients and the
overly aggressive decrease in learn-rate over time [Rud16]. RMSProp adapts the
learn-rate individually for each parameter and normalises the learn-rate using
the RMS of squared gradients [Har13]. Compared to Adam, RMSProp places
more emphasis on normalising learn-rates whereas Adam combines momentum-
descent and adaptive learn-rate.

The central equation of RMSProp updates parameters using the normalised
gradient and the squared RMS of past gradient:

θt+1,i = θt,i −
η√

E[g2]t + ϵ
· gt,i (10)

Where E[g2]t signifies the weighted moving average of squared gradients of
parameter i at time t.
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3.1.6 Adaptive Moment Estimation for Stochastic Gradient Descent

Adaptive Moment Estimation for SGD, or AMSGrad for short, addresses a
limitation of the Adam optimiser, where the learning rate can grow unbounded
and lead to slow convergence to a minima. AMSGrad updates the update rule
of Adam to prevent this issue while preserving the benefit of adaptive learning
rates and momentum. The update rule of AMSGrad is as follows:

θt+1,i = θt,i −
η√

v̂t,ii + ϵ
· m̂t,i (11)

This equation is similar to Adam’s update rule where the change lies in the
denominator. v̂t,ii is the bias-corrected moving average of past gradients for the
current parameter i and m̂t,i which now takes into account i [Red19].

3.2 Datasets

This study has used the aforementioned Adam, RMSProp and AMSGrad opti-
misers to classify images. These algorithms are studied on image-only datasets
seen in Table 1. The datasets chosen are a mix of big data and small data with
different amounts of attributes. Datasets from this study are collected from
MNIST and CIFAR. An evaluation of the quality of the dataset is not neces-
sary as the data present is sanitised and ready to use in training. The MNIST
dataset provides 70,000 monochromatic images of 28 by 28 pixels of handwritten
digits and 10 total classes, for the numbers 0 through 9. The CIFAR-10 dataset
consists of 60,000 color 32 by 32 images with 10 classes of common objects
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). The
CIFAR-100 dataset consists of similar images as CIFAR-10 but instead features
100 total classes with 600 image each.

Dataset Name Num. of Instances Num. of Attributes
MNIST 70,000 784
CIFAR-10 60,000 3072
CIFAR-100 60,000 3072

Table 1: Dataset Information

3.3 Hyperparameter Setting and Tuning

3.3.1 Batch Size

The batch size hyperparameter determines the number of samples used in each
train iteration to compute gradients and update model parameters. It deter-
mines how many data points are included in each gradient computation and
subsequent parameter update [Bot18]. Large batch sizes lead to faster conver-
gence at the cost of high computational power with no significant impact on
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Figure 1: The relationship between number of epochs, precision, test accuracy
and F1-Score

accuracy [Kan20], whereas small batch sizes lead to more noise but could po-
tentially create sharper minima [Jas18]. This study will use a batch size of 64,
which is deemed a generally acceptable value for image classification and runs
sufficiently optimally on laptop computers.

3.3.2 Epochs

An epoch defines how many times a model will iterate over the full dataset
during the optimisation process. All optimisation algorithms need the number
of epochs as a parameter. A higher number of epochs may not necessitate in
higher accuracy, as seen in Fig. 1 [Yas17]. Each model in this study will run
5, 10, 15, 20, 25 and 30 epochs to more fairly evaluate the performance of each
optimiser.

3.3.3 Decay Rate

Decay rate controls how much the algorithm considers past gradients when
updating parameters. Rates close to 1 gives more weight to recent gradients
and vice versa for values close to 0. In RMSProp and AMSGrad, this value
influences the exponential moving average of squared gradients [Tie12] [Red19].
In Adam, this value influences the moving average of past gradients [Kin14]. An
excessively large decay rate will decrease the learn-rate too rapidly and result in
poor performance, whereas a excessively low decay rate will result in no decay
at all. This study will use a generally optimal decay-rate of 0.001 [Jas20].

3.3.4 Convolutional Neural Networks

A convolutional neural network (CNN) is a deep learning algorithm that con-
volves input images with filters, or kernels, to identify and extract images. An
image of N × N is convolved with a f × f filter and this convolution learns
the same feature on the entire image [Zei14]. These features are learnt by fea-
ture maps that capture the receptive field of the image. The equation of a
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convolution is as follows [Cha18]:

O = max(0, b+Σ2
i=0Σ

2
j=0wi,jha+i,b+j) (12)

Here, O is the output, w is a matrix of shared weights, max(0, x) is a Rectified
Linear Unit (ReLU) activation function, and hx,y is the activation at position
x, y. Since the datasets used have varying dimensions, the CNNs used for each
will vary.

4 Methodology

This study will create nine separate CNN models, all of which will be kept
simplistic for the purpose of demonstration and brevity, and to demonstrate
the effects of optimsers rather than the model itself. Each model uses one
convolutional layer with a Rectified Linear Unit (ReLU), a max-pooling layer,
a flatten layer and one dense hidden layer.

4.1 Evaluation Methodology

This study will use several metrics to gauge the prediction accuracy and com-
putational speed of each model. Raw collected data will be presented as line
graphs or bar charts, plotting epochs against accuracy and F1 score. The mod-
els degree of correctness is calculated and measured with three main metrics:
accuracy, precision and F1 Score. Accuracy is calculated as:

accuracy =
TP + TN

TP + TN + FP + FN
(13)

Where TP/TN is the number of True Positive/Negative predictions, and FP/FN
is the number of False Positive/Negative predictions. Precision is calculated as
follows:

precision =
TP

TP + FP
(14)

F1 Score is a more representative weighted average of precision and recall (given
by TP

TP+FN ), calculated by:

Score = 2× (Recall × Precision)

(Recall + Precision)
(15)

5 Results

5.1 MNIST Results

All models performed well on the MNIST dataset, averaging very similar accu-
racies of around 98%. Accuracy and F1 score variation across number of epochs
was not significant. A low number of epochs resulted in an expected drop in
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Table 2: Effect on Adam Optimiser Computation Time with Changing Epoch
Count in the MNIST Dataset

No. Epochs Compute Time (sec)
5 80.51
10 154.02
15 223.46
20 295.51
25 387.08
30 467.60

Figure 2: Adam Performance on MNIST

accuracy and all optimisers evened out at 10 epochs and above. The compute
time varied more, with Adam having the highest average compute time across
all number of epochs. The fastest optimiser was RMSProp with the lowest
running average across all number of epochs.

Table 3: Effect on RMSProp Optimiser Computation Time with Changing
Epoch Count in the MNIST Dataset

No. Epochs Compute Time (sec)
5 47.72
10 93.63
15 152.14
20 207.30
25 265.05
30 309.01
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Figure 3: RMSProp Performance on MNIST

Table 4: Effect on AMSGrad Optimiser Computation Time with Changing
Epoch Count in the MNIST Dataset

No. Epochs Compute Time (sec)
5 66.69
10 127.58
15 191.35
20 258.95
25 339.41
30 395.86
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Figure 4: AMSGrad Performance on MNIST

5.2 CIFAR-10 Results

As expected, the average accuracy dropped when facing more complex image
tasks. However, there is still no notable difference between the performance of
each optimiser, except that accuracy decreases with an increase in epoch count,
likely due to underfitting in low epoch counts. Compute time for each optimiser
is relatively close, with RMSProp still performing the fastest across all number
of epochs. AMSGrad and Adam had very similar times across all epochs.

Table 5: Effect on Adam Optimiser Computation Time with Changing Epoch
Count in the CIFAR-10 Dataset

No. Epochs Compute Time (sec)
5 66.61
10 149.47
15 218.97
20 292.47
25 366.73
30 441.16
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Figure 5: Adam Performance on CIFAR-10

Table 6: Effect on RMSProp Optimiser Computation Time with Changing
Epoch Count in the CIFAR-10 Dataset

No. Epochs Compute Time (sec)
5 57.81
10 113.39
15 175.41
20 239.36
25 296.22
30 356.53

Figure 6: RMSProp Performance on CIFAR-10
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Table 7: Effect on AMSGrad Optimiser Computation Time with Changing
Epoch Count in the CIFAR-10 Dataset

No. Epochs Compute Time (sec)
5 69.75
10 179.23
15 244.21
20 312.75
25 383.71
30 458.06

Figure 7: AMSGrad Performance on CIFAR-10

5.3 CIFAR-100 Results

Variation in accuracy became more significant between each optimiser. RM-
SProp achieved the highest average accuracy of 36.56% while Adam and AMS-
Grad performed similarly at around 34.5%. RMSProp had very similar compute
time compared to Adam with a negligably small difference across all epochs.
AMSGrad had the slowest compute time across all epochs. Accuracy experi-
enced a drop after 25 epochs in AMSGrad and RMSProp models whereas Adam
seems to stabilise at around 35% accuracy after 15 epochs.
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Table 8: Effect on Adam Optimiser Computation Time with Changing Epoch
Count in the CIFAR-100 Dataset

No. Epochs Compute Time (sec)
5 48.20
10 94.03
15 142.50
20 190.04
25 231.91
30 284.50

Figure 8: Adam Performance on CIFAR-100

Table 9: Effect on RMSProp Optimiser Computation Time with Changing
Epoch Count in the CIFAR-100 Dataset

No. Epochs Compute Time (sec)
5 48.05
10 95.39
15 141.67
20 189.79
25 263.26
30 291.71
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Figure 9: RMSProp Performance on CIFAR-100

Table 10: Effect on AMSGrad Optimiser Computation Time with Changing
Epoch Count in the CIFAR-100 Dataset

No. Epochs Compute Time (sec)
5 54.55
10 101.64
15 152.29
20 200.30
25 251.60
30 303.18
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Figure 10: AMSGrad Performance on CIFAR-100

6 Evaluation

This study has conducted a comparison of various optimiser algorithms on var-
ious image tasks, evaluating their accuracy and computational speed. The ex-
perimental results show that RMSProp is overall the fastest optimiser compared
to Adam and AMSGrad, and while all models performed similarly in terms of
accuracy. RMSProp showed a 2% increase when compared to Adam and AMS-
Grad when faced with a image classification task with many classes.

7 Conclusion and Future Work

After evaluating the impact of various optimisation algorithms and observing
whether improvements to the update rule itself has significant tangible impact
on compute speed and accuracy, the results suggest the difference may not be
major when working with smaller dataset of around 60,000 instances. Across the
experimental tests, RMSProp demonstrated the lowest compute time and higher
accuracy when faced with complex image classification problems. It may not
be conclusive due to the low feature space dimension but still provides insight
into the effectiveness of different optimisation algorithms. This study can be
extended to test on realistic datasets or expanding the number of optimisers
examined.
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