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Abstract

Cardiovascular diseases (CVDs), simply heart diseases, are the leading
cause of death globally, needing effective early detection tools. Traditional
methods for diagnosis are time-consuming and they cost too much. The
goal of this project is to conduct a comprehensive comparison analysis on
the applicability of machine learning algorithms for predicting heart dis-
eases. We used a publicly available dataset. We conducted Exploratory
Data Analysis (EDA) and data preprocessing, including feature scaling
and encoding, to make the data suitable for machine learning algorithms.
The study included utilizing fundamental machine learning methods like
Logistic Regression and Support Vector Machines, as well as more ad-
vanced techniques such as Artificial Neural Networks. The performance of
our classifiers was evaluated using the metrics recall, precision, F1 Score,
and accuracy. Based on our study, Logistic Regression was the most ac-
curate model, with the accuracy rate of 90%. Furthermore, we found out
that hyperparameter tuning and data standardization increased classifier
performance. Our findings provide a thorough guidance for healthcare
practitioners and data scientists interested in using machine learning for
heart disease prediction, including all steps from data preparation through
model evaluation.

1 Introduction

The term cardiovascular diseases (CVDs), simply heart diseases, refer to a group
of disorders affecting the heart and blood vessels. These conditions include coro-
nary heart disease, cerebrovascular disease, rheumatic heart disease, and various
other heart related health complications. CVDs are leading cause of mortality
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worldwide, accounting for almost 18 million of deaths annually according to the
World Health Organization [Wor22]. Most of these deaths, over 80%, are caused
by heart attacks and strokes [MPN+11]. Factors like poor diet, lack of exer-
cise, alcohol consumption, and smoking increases the risk of having these heart
issues. However, early diagnosis of CVDs is essential for starting appropriate
medication, counseling, and therapy as soon as possible. The early identifica-
tion of those at a higher risk and taking appropriate actions timely can reduce
unexpected and premature mortality.

Traditional methods for diagnosing CVDs involve performing many tests
such as electrocardiograms (ECGs), blood tests, and sometimes more compli-
cated procedures are required. These tests are evaluated detailly by medical
professionals [GAK+21]. The traditional way is not only time-consuming but
also expensive. In an era where healthcare data is being produced in previously
unreachable amounts, there is a rising need to develop quicker, more efficient
approaches for diagnosing this widespread condition.

This is where machine learning’s transformative potential comes into play.
Machine learning is a specialized area within computer science that focuses
on the development of algorithms that enable computers to make predictions
or decisions based on input data [ENM15]. In other words, machine learning
enables computers to learn from data, use that knowledge to handle certain
situations, and make predictions that apply to various scenarios. In contrast
to traditional methods, machine learning algorithms can rapidly analyze large
healthcare data and uncover some patterns that may be missed by traditional
diagnostic process. Machine learning algorithms have been increasingly popular
in the medical industry in recent years, including the diagnosis of heart diseases.
Various methods have been applied, ranging from simpler ones like logistic re-
gression to more complex neural networks. However, there are still unanswered
concerns regarding which provides the greatest performance in terms of accuracy
and effectiveness.

While there has been considerable research utilizing machine learning al-
gorithms for predicting heart diseases, most studies focus on specific algorithms
without extensive comparative analyses. This research aims to bridge this gap
by conducting a comprehensive comparative analysis on prediction of heart dis-
eases using a variety of machine learning algorithms, ranging from basic models
like Logistic Regression and Support Vector Machines to more advanced tech-
niques such as Artificial Neural Networks (ANN). The research not only focuses
on model implementation and evaluation, but it also dives into hyperparameter
tuning and data preprocessing.

There are a lot of different goals to be accomplished with this research:

1. Examining effective techniques, such as feature scaling and encoding, for
preprocessing the data for optimum model training
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2. Conducting exploratory data analysis in order to provide a better under-
standing of the data characteristics and distributions.

3. Testing and evaluating the performance of multiple machine learning al-
gorithms in predicting the risk of heart diseases.

4. Applying hyperparameter tuning and data standardization, analyzing their
influence on model performance to optimize the performances of our mod-
els

5. Presenting a custom-designed Artificial Neural Network model, explaining
its architecture and efficiency in comparison to standard models.

The idea of this work is not limited with using algorithms to achieve better
results. Different algorithms have their strengths and weaknesses and may per-
form differently based on the specific set of data they are given. Therefore, our
primary objective is to evaluate and compare these different machine learning
methods on the same dataset, aiming to identify which algorithm is the most
accurate in predicting heart disease.

Through this comprehensive approach, this research aims to provide valu-
able insights into the efficacy of various machine learning models for heart dis-
ease prediction and aims to be a resource for both healthcare practitioners and
data scientists in the field.

2 Dataset

The dataset used in this study is obtained from Kaggle [Rah21]. The name of
the dataset in Kaggle platform is “Heart Attack Analysis & Prediction Dataset”.
The dataset in Kaggle was taken from UCI Machine Learning Repository [JD88],
originally named “Heart Disease”, formed by a combination of four different
databases:

• Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.

• University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.

• University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.

• V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert
Detrano, M.D., Ph.D.

However, the dataset in Kaggle which was extracted from UCI, only consists
of the Cleveland database out of these four databases.

3



The dataset contains 13 medical attributes of 304 patients, helping us to
identify those at risk of developing heart disease by categorizing patients into
groups: those at risk and those not at risk of heart disease. The dataset is
composed of 303 samples (303 rows) and 13 input features as well as 1 output
feature (14 columns). Attributes are listed and described below in Table 1 .

Attribute Name Type Description Range
age Numerical Age of the patient in years Values between 29 and 77

sex Binary Gender of the patient
1 = male

0 = female

cp Categorical Level of chest pain the patient suffering from

3 = non anginal pain
2 = atypical angina
1 = typical angina
0 = asymptomatic

trtbps Numerical Resting blood pressure in mmHg (at entry to the health center) Values between 94 and 200
chol Numerical Serum cholesterol level in mg/dl (at entry to the health center) Values between 126 and 564

fbs Binary Fasting blood sugar according to mg/dL
Fasting blood sugar level ¿ 120 mg/dL;

1 = true
0 = false

restecg Categorical Resting ECG results
2 = having ST-T wave abnormality

1 = normal
0 = hypertrophy

thalachh Numerical Maximum heart rate achieved Values between 71 and 202

exng Binary Exercise induced angina
1 = yes
0 = no

oldpeak Numerical ST depression induced by exercise relative to rest Real number values between 0 and 6.2

slp Categorical The slope of the peak exercise ST segment
2 = upsloping

1 = flat
0 = downsloping

caa Numerical Number of major vessels colored 0, 1, 2, 3

thall Categorical Thallium test result
3 = reversable defect

2 = normal
1 = fixed defect

num Binary The predicted attribute - diagnosis of heart disease
1: > 50% diameter narrowing, more chance of heart disease
0: < 50% diameter narrowing, less chance of heart disease

Table 1: Description of Dataset Attributes

2.1 Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) refers to analyzing data sets to identify their
main characteristics by using graphical representations and statistical tech-
niques [Gel04]. The primary goal of performing EDA is to gain insights into the
data, understand its underlying structure, and identify patterns, trends, and po-
tential outliers. EDA usually involves displaying data using various graphs and
charts, calculating statistical summaries, and examining data distributions. It
is an important phase in the data analysis process because it allows researchers
to make better decisions in further steps.

Exploratory Data Analysis (EDA) is a critical stage in our study, diving
deeply into the dataset in order to uncover insights and understand its under-
lying structure. Graphs and charts were plotted with the library Matplotlib
present in Python [Bis19].
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2.1.1 Missing Value Check

In order to ensure the reliability of the dataset, we checked dataset for missing
values, shown in Figure 1. The positive outcome was that no missing values
were detected, indicating that our dataset is complete and ready for further steps
without the need for imputation or any other missing data handling procedures.

Figure 1: Missing Value Count

2.1.2 Statistical Outline

The statistical summary presented in Figure 2 provides an overview of the
dataset’s statistical measures such as mean, standard deviation, minimum, max-
imum, and quartiles for each feature. This numerical summary provides us an
initial understanding of the data’s distribution.

Figure 2: Statistical Outline of The Dataset

2.1.3 Visualizing Categorical Feature Distribution

Figure 3 displays graphs showing the distributions of categories within each
individual categorical feature. These graphs provide a thorough look at how
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data is distributed across different categories and reveal information about the
frequency and balance of different categorical variables in the dataset.

Figure 3: Categorical Feature Distributions

2.1.4 Visualizing Continuous Feature Distributions

Figure 4 displays box plots that give an overview of the distributions and statis-
tical traits of our continuous features. These visualizations highlight the central
tendencies, variations, and potential outliers within each feature, shedding light
on their properties and their relevance in predicting heart disease risk.

6



Figure 4: Continuous Feature Distributions

2.1.5 Class Distributions

Figure 5 shows an overview of the label distribution, providing information
on the number of instances with heart disease and those without it. While
developing machine learning models for classification tasks, it is important to
take the class balance into account and handle any potential class imbalance
problems. Our chart confirms that dataset exhibits a balanced distribution of
the cases ‘0’ and ‘1’.

7



Figure 5: Class Distribution

2.1.6 Correlation Matrix

Understanding the interdependencies among variables has significant impor-
tance in machine learning for several reasons [Hal99], such as finding relevant
features, spotting multicollinearity, and understanding our dataset’s structure.
Because of that, a correlation matrix assumes a pivotal role. A brief summary
of the pairwise correlations between several attributes in our dataset may be
seen in the matrix below.

This heatmap of our correlation matrix, shown in Figure 6, provides a
quick view of the relationships. A color spectrum ranging from yellow to deep
red is used to denote the strength and direction of correlations in this heatmap.
Yellow indicates strong negative correlations, deep red indicates strong positive
correlations, and colors in the middle indicate varying degrees of correlation.

Figure 6: Correlation Matrix Heatmap
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2.1.7 Pairplot Based on Target Variable

The pairplot, shown in Figure 7, is the next analytical tool in our EDA after
the correlation matrix. A pairplot displays scatter plots for each pair of features
to demonstrate their relationships, as well as graphs to show the distribution
of each variable. This is a very useful method for having a quick idea of rela-
tionships and distributions [SGN20]. It allows us to see how different pieces of
data relate to one another and how they look like overall. In this pairplot, each
point is colored based on the target variable (output) value, making it easier to
identify potential patterns or clusters that could be significant for our machine
learning models.

Figure 7: Pairplot
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2.2 Data Preprocessing

2.2.1 Feature Categorization in the Dataset

In our dataset, we have purposefully divided the features into two distinct cate-
gories: categorical and continuous columns. Categorical columns, which stored
in the list categorical cols, include features such as ’sex’, ’exng’, ’caa’, ’cp’, ’fbs’,
’restecg’, ’slp’, and ’thall’. These columns contain values that are limited and
fixed, often representing different categories or classes. For example, the ’sex’
column only contains values ‘1’ or ‘0’ representing male and female respectively,
and ’cp’ column contain ‘3’, ‘2’, ‘1’ or ‘0’ representing 4 different types of chest
pains.

On the other hand, the continuous columns, which stored in the list continu-
ous cols, include features such as ’age’, ’trtbps’, ’chol’, ’thalachh’, and ’oldpeak’.
These features can take any numerical value within a specific range, representing
quantitative measurements. For example, ’age’ could range from young adults
to elders, and ’chol’ represents varying levels of cholesterol in the blood.

Lastly, our aim is to predict the variable ’output’ which tells us if someone
has heart disease or not.

This categorization into categorical cols and continuous cols is vital because
each type of variable requires specific preprocessing techniques to make the data
suitable for machine learning algorithms.

2.2.2 One-Hot Encoding of Categorical Features

One-hot encoding [Seg18] is a technique used for converting categorical variables
into a format that can be provided to machine learning algorithms to improve
predictions by making the data more understandable to the machine.

For instance, consider the variable ’cp’ (Chest Pain Type), which is cate-
gorical and contains the following values:

• 0: asymptomatic

• 2: atypical angina

• 1: typical angina

• 3: non-anginal pain

The machine learning algorithm may produce misleading results if it directly
evaluates these values numerically. This is because the algorithm can incorrectly
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consider the ordinal values as continuous inputs with a significant quantitative
relationship, resulting in inaccurate analytical results.

To give an example, Table 2 represents a part of the dataset that contains
the ’cp’ values for five different patients:

Patients ’cp’ Value
0 2
1 0
2 0
3 3
4 1

Table 2: ’cp’ Values

Upon application of one-hot encoding, this single ’cp’ variable will be de-
composed into four binary variables, corresponding to each unique category in
the original ’cp’ column, shown below in Table 3:

Patients cp 0 cp 1 cp 2 cp 3
0 0 0 1 0
1 1 0 0 0
2 1 0 0 0
3 0 0 0 1
4 0 1 0 0

Table 3: Encoded Version of ’cp

2.2.3 Scaling of Continuous Features Using Standard Scaler

Feature scaling is the second crucial stage in the preprocessing pipeline for our
machine learning models. This step is particularly important because many
machine learning methods do not perform well when the input features have
different scales or when they are on different ranges.

Many machine learning algorithms are sensitive to the scale of input fea-
tures. Algorithms like k-NN, SVM, and Logistic Regression calculate the dis-
tance between data points to make predictions. When the features are not on
a similar scale, the algorithm might give higher importance to variables with a
higher value, which can result in an inaccurate model.

In order to overcome this obstacle, we implemented Standard Scaler for
scaling features by standardization. We aimed to mitigate issues related to the
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range and distribution of data points thus improving the models’ efficiency and
accuracy.

Mathematically, the transformation by Standard Scaler [AHRD23] can be
understood as follows:

For each feature Xi ; the scaler calculates its mean µ, and standard devi-
ation σ. Then, each data point x of the feature Xi is transformed using the
following formula:

Z =
x− µ

σ

Where;

• Z is the standardized feature value (scaled datapoint)

• x is the original feature value (original datapoint).

• µ is the mean of the feature.

• σ is the standard deviation of the feature.

When a feature is standardized, this formula is applied to every single
value in the feature, and the original values are replaced with the resulting
standardized values. The outcome is a feature that has been scaled such that
its values (datapoints) now hover around zero (we get values ranging from -1 to
+1), which makes it easier for machine learning algorithms to find patterns or
make decisions based on this data.

2.2.4 Train-Test-Validation Split

It is critical in machine learning studies to ensure that models are trained and
evaluated on distinct data sets. This not only ensures that the model is learn-
ing patterns from the data, but it also validates its performance on previously
unseen data. To achieve this goal, we separated the available dataset into three
different subsets: training, testing, and validation [TYW+21].

Training set is the largest subset of the data, generally ranging from 60%
to 80% of the entire dataset. The training set is used to ’teach’ the machine
learning algorithm. All the weights and transformations are learned on this
dataset.
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After the model has been trained and fine-tuned, its performance is evalu-
ated using the testing set, which typically comprises 10% to 20% of the dataset.
This is data that the model has never seen before, thus it provides an accurate
assessment of how the model would perform in a real-world scenario.

Validation set sits in between the training and testing phases. During the
training phase, it is used to fine-tune model parameters and offer an unbiased
evaluation of model fit. The model sees this data but does not learn from
it, therefore the validation set is an important component for hyperparameter
tuning [TYW+21].

We initially split the dataset into two parts: 80% for training and 20% for
testing. Then, we took 20% of the data from the training set to construct a
validation set. As a result, the final data distribution was 60% training, 20%
validation, and 20% testing.

3 Method

3.1 Machine Learning Algorithms

A machine learning algorithm is a computing process that uses input data
to complete a prediction or a classification task without being explicitly pro-
grammed to do so [Sar21]. These algorithms automatically adjust or adapt their
architecture as a result of repetition and experience.

The adaptation process is known as training. Training involves providing
samples of input data along with desired outputs. The algorithm is then set up
in the most optimal manner so that it can both generate the expected outcome
when given the training data and generalize to produce the desired result when
given new, previously unseen data.

The ”learning” component of machine learning is this training. The training
does not have to be restricted to a primary adaption over a set period of time.
An effective algorithm may engage in ”lifelong” learning as it analyses current
data and learns from its errors, much like humans can [ENM15]

Supervised learning [CNM06] is the machine learning method to develop
a function that translates an input to an output using example input-output
pairs. It uses labeled training data made up of a collection of training samples
to form a function.

Train and test datasets are created from the input dataset. The output
variable in the train dataset has to be predicted or categorized. All algorithms
extract some sort of patterns from the training dataset and use them to predict
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or classify the test dataset. [Man20]

In this work, we introduce variety of supervised machine learning algo-
rithms. This involves both non-tree-based and tree-based algorithms, as well as
a custom-built Artificial Neural Network (ANN) model. Further in the results
section, we will analyze the effectiveness of them in predicting heart disease.

3.1.1 Non-Tree Based Algorithms

Non-tree-based algorithms are a type of machine learning algorithms that doesn’t
use decision trees or ensembles of trees as their underlying structure to make
predictions or decisions. To learn from data, these algorithms depend on var-
ious mathematical approaches. The study provides an explanation of the al-
gorithms used in the given order, namely Support Vector Machines [Sut16],
Logistic Regression [HJLS13], K-Nearest Neighbors [CD21], and Naive Bayes
[R+01] [M+06].

3.1.1.1 Support Vector Machines (SVM)

Support Vector Machine is a supervised learning algorithm. It is frequently used
for regression and classification problems. However, this method works greatest
for categorization tasks. Support vector machines construct optimal separat-
ing boundaries in the data set by solving a constrained quadratic optimization
problem. Various levels of nonlinearity and adaptability can be implemented in
the model by distinct kernel functions [DOM02].

The SVM method’s goal is to find the optimal line or decision boundary,
known as a hyperplane, which can divide n-dimensional space into classes, al-
lowing us to quickly classify new data points in the future. SVM selects the
extreme vectors and points that will be used to generate the hyperplane. The
algorithm’s name comes from support vectors, which are the term for these sig-
nificant conditions. A separating hyperplane for two-dimensional data points is
shown in Figure 8. the circles and the squares represent data points in classes
-1 and +1, respectively. On the dotted lines, in black, lie the support vectors.

In this algorithm, each data attribute is shown as a point in a space with
n dimensions, where n is the number of features. After drawing the graph,
classification is performed by selecting the hyper-plane that best separates the
two groups.

Shortly, the SVM model’s goal is to identify the space in the data matrix
where multiple data groups may be formed with a widely separation on the
hyperplane.
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Figure 8: A separating hyperplane for two-dimensional data [MTC09]

3.1.1.2 Logistic Regression (LR)

Logistic regression is a supervised machine learning algorithm that can be used
to solve both regression and classification problems. It is mostly used for binary
classification problems. In logistic regression, probability is used to predict how
the data will be categorized [SV21].

Logistic Regression uses the sigmoid function. Sigmoid determines the
probability of a new observation belonging to a certain class by transforming
the model’s linear output into a value between 0 and 1, making it very useful
for binary classification problems [Sza21].

The mathematical expression for the sigmoid function σ(z):

σ(z) =
1

1 + e−z

In this equation, z is a linear function of the input features x and their corre-
sponding weights w given by:

z = w1 · x1 + w2 · x2 + · · · + xn · wn + b

Here, x1, x2, · · · , xn are input features x1, x2, · · · , xn are learned weights
and b is the bias term.

The graph of the sigmoid function is displayed in Figure 9. The sigmoid
function has an S-shaped curve. As z approaches positive infinity, σ(z) ap-
proaches 1; and as z approaches negative infinity, σ(z) approaches 0. This
squeezing effect ensures that the output is bounded between 0 and 1, making it
useful for estimating probabilities.

A threshold value, usually 0.5, is then applied to this probability to deliver
a binary outcome: if the computed probability is greater than or equal to the
threshold, the model predicts that the instance belongs to the positive class;
otherwise, it belongs to the negative class.
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Figure 9: Graph of Sigmoid Function [Far19]

3.1.1.3 K-Nearest Neighbors (k-NN)

K-Nearest Neighbor is one of the most straightforward but efficient classification
algorithms [UHL+22]. It is an instance-based learning method that does not
come with a complete theoretical model.

The algorithm classifies unknown instances based on their similarity to
known instances in the training set. The k-NN method does an extensive search
to identify the ’k’ training samples that are closest to the new unclassified in-
stance when it is added to the pattern space. In other words, it makes decisions
for classification of the data by calculating the distances between the new un-
known data point and all the known data points in the training set. Numerous
techniques, including the Euclidean distance, Manhattan distance, and other
metrics, might be used to determine the distance.

The calculation of Euclidean distance can be made using following formula:

DE =

√√√√ n∑
i=1

(xi − yi)2

Where;

• n =number of dimensions

• xi, yi =data points

And also, calculation of Manhattan distance can be made using following
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formula:

DM =

n∑
i=1

|xi − yi|

Once the ’k’ closest neighbors are identified, the algorithm examines the
labels or categories of them. The new, unclassified data point is then classified
using the category that most frequently occurs among its closest ’k’ neighbors.
In other words, the class of the unclassified data point is predicted by majority
vote among its closest neighbors.

For example, if ’k’ is 3, and two out of the three closest neighbors to the
unknown point are labeled as ”Class A” and one is labeled as ”Class B,” then
the new data point would be classified as ”Class A” due to the majority rule.

In some variations of k-NN, weighted voting can be applied, where closer
neighbors have more influence on the classification of the new data point. This
is often done by assigning weights to the votes of the neighbors based on their
distance to the unknown point.

3.1.1.4 Naive Bayes (NB)

The Naive Bayes classifier is a probabilistic machine learning model based on
Bayes Theorem and predicated on the idea of predictor independence. The
classifier is termed ”Naive” because it makes an important assumption that the
features in the dataset are mutually independent of each other, given the class
label [IWASA07]. In other words, the presence of one feature does not affect
the presence of another.

The fundamental principle behind the Naive Bayes classifier Bayes’ Theo-
rem [Ber19], can be mathematically expressed as:

P (A|B) =
P (B|A) · P (A)

P (B)

Where,

• P (A|B) is the posterior probability: The probability of the event A oc-
curring given that B is true.

• P (B|A) is the likelihood: The probability of the event B occurring given
that A is true.
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• P (A) is prior probability.

• P (B) is marginal probability.

In the context of Naive Bayes classification, the prediction ŷ for a given
feature vector x, is determined by identifying the class c that maximizes the
posterior probability P (c|x). Mathematically, this is expressed as:

ŷ = argmax
c

P (c|x)

According to Bayes’ theorem [Ber19], after simplifications the expression
can be written as:

ŷ = argmax
c

n∏
i=1

P (xi|c)× P (c)

Here, n is the number of features in x. The class c that maximizes this expres-
sion is selected as the predicted label ŷ for the given input x. This mathematical
framework allows the Naive Bayes classifier to make efficient and effective clas-
sifications.

3.1.2 Tree-Based Algorithms

Tree-based classification models are effective tools within supervised learning
algorithms in the field of machine learning [PP18]. They give a logical, step-by-
step approach to decision-making. These models use a hierarchy of conditional
statements to divide the training data into subsets, each adding a layer of com-
plexity to the final model. These conditional statements, also known as splits,
are designed to optimize information gain or other similar criteria, allowing for
more precise predictions.

The complete model may be represented graphically as a tree structure,
effectively functioning as a roadmap of logical tests. Beginning at the root, each
branch provides a decision rule that further splits the data, eventually leading
to the leaf nodes, which contain the final prediction or classification label. This
research investigates the sequence in which the algorithms Decision Tree [CA21],
Random Forest [BD16], Gradient Boosting [BCMM21] and XGBoost [CHB+15]
are utilized.
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3.1.2.1 Decision Tree (DT)

Decision Tree (DT) is regarded as one of the earliest and widely used machine
learning algorithms. Decision trees are prediction models that analyze data in
the form of a tree. A DT, which is a flowchart-like structure, typically consists of
multiple layers of nodes. The highest level is known as the root or parent node,
while the lower levels are known as child nodes. Each internal node represents
an attribute test, each branch represents the outcome of the attribute test, and
each leaf node represents the class label [SK16].

The root node has zero entering degree, which indicates it has no incoming
edges. Initially, all tuples are at the root node. The tree achieves classification
by splitting its branches, with each split representing a test on a data attribute.

A decision tree classifies data items by asking a sequence of questions re-
garding the objects’ attributes. Each question is contained in a node, and each
internal node refers to one child node for each potential response to its query.
As a result, the questions create a hierarchy, which is stored as a tree [SK16].

In its most basic form, yes-or-no questions are asked, and each internal node
has a child that answers ”yes” or ”no.” Following the path from the topmost
node, the root, to a node without children, a leaf, an item is sorted into a class
based on the responses that apply to the object under consideration. An item
is assigned to the class that corresponds to the leaf it reaches. An example of a
simple decision tree is shown in Figure 10.

The primary principle behind any multistage procedure is to break down
a complex decision into a union of numerous simpler decisions, hoping that the
final answer received this way will closely match the desired solution.

Figure 10: An Example of a Decision Tree [KS08]
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3.1.2.2 Random Forest (RF)

Random Forest (RF) is one of the most widely used supervised machine learning
techniques for classification and regression. It works by building a forest out
of several random and disconnected Decision Trees (DTs), which perform as an
ensemble, throughout the training phase [Pal05].

Each Decision Tree makes a random selection of the sample features and
the portion of the sample data set that is going to be used as the training set.
This is done with the help of a random vector that is utilized as a parameter.

During the testing period, each decision tree, which is an element of the
forest, predicts the class label for each instance. The results of all the decision
trees are combined before any predictions are made. After each tree has made
its prediction regarding the class label, the final decision for each set of test data
is made by a process of majority voting. A simple scheme for the structure of
Random Forest is presented in Figure 11. The class label with the most votes
is considered the best appropriate label for the test data. This cycle is repeated
for every single piece of data contained in the collection.

Figure 11: Simplified Structure of a Random Forest [SK19]

3.1.2.3 Gradient Boosting (GB)

Gradient Boosting Machine is a very effective and extensively used machine
learning technique that is mainly used for regression and classification problems.
It is a member of the boosting algorithm family, which are ensemble techniques
intended to improve the overall performance of weak learners by combining
the results they produce [NK13]. Gradient boosting obtains predictions in a
sequential manner. Each decision tree in gradient boosting predicts the error
of the previous decision tree, consequently boosting the error. The error, or
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residual, acquired after developing a model is known as the gradient. Boosting
means to improve. Gradient boosting is a technique for gradually reducing
error. Rather of focusing just on bias reduction, gradient boosting employs the
gradient descent technique to reduce residuals. The approach computes the
negative gradient of the loss function with respect to the prediction at each
iteration. The model is then trained on these pseudo-residuals and added to the
ensemble of models explained in Figure 12.

Figure 12: Flow Diagram of Gradient Boosting [ZLV+21]

3.1.2.4 XGBoost(XGB)

XGBoost, which stands for ”eXtreme Gradient Boosting,” is an improved and
optimized version of the gradient boosting technique, designed to be very effi-
cient, scalable, flexible, and portable.

XGBoost, like gradient boosting, creates an ensemble of weak learners,
often decision trees, in a sequential manner to generate a strong learner that
accurately predicts the target variable [CG16].

It is essentially an enhanced implementation of the gradient boosting method
with additional advanced features and improvements explained in Table 4, fo-
cused on performance and speed:
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Features Description
Regularization XGBoost includes an additional

regularization term in the loss
function, which controls the

complexity of the individual trees.
This helps in reducing overfitting.

Handling Missing Data XGBoost has an in-built routine to
handle missing values, thereby

providing robustness to the model.
Parallel and Distributed Computing XGBoost is designed to be highly

efficient. It can utilize the power of
parallel processing (on a single

machine) and distributed computing
(across multiple machines) to train

models, which is one reason why it’s
faster than many other

implementations of gradient
boosting.

Flexibility XGBoost allows users to define
custom optimization objectives and
evaluation criteria, which makes it

versatile for a wide array of
problems.

Tree Pruning Unlike other gradient boosting
methods that grow a tree by level,
XGBoost grows a tree depth-wise
and then prunes it using the ”max
depth” parameter, making it more

computationally efficient.
Cross-Validation Inbuilt k-fold cross-validation is

another feature that sets XGBoost
apart from the traditional GB,

thereby providing a more robust
measure of error during the model

training phase.
Column Block The algorithm utilizes a compressed

memory-efficient format for storing
the dataset to optimize cache

performance. This leads to faster
computation.

Table 4: XGBoost Improved Features
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Designed for speed and performance, XGBoost has gained popularity for
its effectiveness in competitions and real-world machine learning tasks.

3.1.3 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs) are computational models inspired by the
biological neural structures found in the human brain [ZHS09]. Designed to
complete tasks faster than standard computing methods, ANNs are a critical
technology in the machine learning realm. Similar to the human brain, which
consists of interconnected neurons transmitting signals, ANNs are composed of
a network of artificial neurons, or nodes, designed to work collaboratively to
perform complex tasks [Gra13].

Structural Overview: The architecture of an ANN comprises three funda-
mental layers: the input layer, one or more hidden layers, and the output layer.
Each of these layers is made up of nodes that simulate the function of biological
neurons, shown in Figure 13. The nodes are interconnected by ”edges”, drawn
in Figure 14, which can be thought of as virtual synapses [BH00]. These edges
are weighted, and the values of these weights are iteratively updated during
the learning phase. Moreover, each node is associated with a bias term, which
allows the model to fit the data better.

Figure 13: Scheme of A Biological Neuron [BH00]

Figure 14: Scheme of An Artificial Neural Network [BH00]

Functional Dynamics: In terms of its operation, an ANN is highly similar
to the neural processes of the human brain. The input layer serves as the initial
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point of contact for external signals. It captures data from the external environ-
ment and channels it to the hidden layer. The hidden layer, lying between the
input and output layers, is the computational engine of the network [WF18]. It
identifies hidden patterns and characteristics in the ingested data by perform-
ing complex, often non-linear, computations. The extracted patterns are then
passed on to the output layer, which provides the final prediction or classifica-
tion result.

Data Flow: The flow of information starts from the input layer and pro-
ceeds in a feedforward manner through the hidden layers to reach the output
layer. Unlike biological neurons that communicate through electrical impulses,
nodes in the input layer of an ANN receive data inputs, which they relay to the
hidden layer after applying specific weights [Abr05]. The hidden layer, in turn,
refines these inputs into meaningful patterns or features through mathematical
transformations. These refined features are then transferred to the output layer,
which yields the final output based on the type of the task—classification, pre-
diction, or any other machine learning objective [ALPM+13]. Overview of the
ANN is explained in Table 5:
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Concepts Description
Sequence of Layers A network is essentially a sequence of interconnected

layers.
Input Layer This is the first layer in the network, and it receives

the initial data for the machine to process. In our
case, the input X would be the features of an exam-
ple.

Output Layer The last layer of the network produces the output,
denoted as ŷ which is the model’s prediction for the
given input.

Hidden Layers These are the layers that reside between the input
and the output layers. They perform most of the
computation required by the network.

Layer as a Function Each layer can be seen as a mathematical function
that transforms its input data into a specific output.

Layer Types Different types of layers can be used, such as convo-
lutional layers, max-pooling layers, and dense layers,
depending on the application.

Data Flow The output of one layer serves as the input for the
next layer, establishing a chain of computational
steps.

Learning Process During the training phase, the network learns by ad-
justing the weights and biases based on the error of
its predictions.

Backpropagation This is the most common training algorithm used
for ANNs. It minimizes the error by adjusting the
weights in the reverse order, starting from the output
layer, and moving toward the input layer.

Cost Function ANNs utilize a cost function (such as Mean Squared
Error for regression tasks or Cross-Entropy Loss for
classification tasks) to measure the difference be-
tween the predicted output and actual target.

Epochs and Mini batches ANNs are often trained using the entire dataset for
several iterations (epochs). Mini-batch gradient de-
scent can be used to update the weights using a sub-
set of the data, which is computationally more effi-
cient.

Regularization Techniques like dropout, weight decay, and early
stopping are used to prevent overfitting, a common
problem in ANNs due to their high capacity for learn-
ing complex patterns.

Table 5: Concepts in ANN
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The architecture is influenced by a range of factors [DSHSAF+17]. The
factors determining network architecture is explained in Table 6:

Factors Description
Number of Layers This refers to the total count of layers in the network, including

input, hidden, and output layers.
Type of Each Layer Different tasks may require different types of layers.
Hyperparameters These are settings or configurations that are external to the model

but influence its behavior—like learning rate or the number of
neurons in a layer.

Activation Functions These are mathematical functions associated with each layer, like
ReLU or Sigmoid, that introduce non-linear properties into the
system.

Table 6: Factors Determining the Architecture of ANN

3.1.3.1 Architecture of Our Custom ANN Model

The architecture of our custom Artificial Neural Network (ANN) is designed to
optimize performance for the specific problem at hand.

Input layer: In our custom model, the input layer (Figure 15) consists of 32
neurons, utilizing the hyperbolic tangent (tanh) activation function [DSC22].

Figure 15: Code for The Input Layer Formation

The mathematical representation of the tanh [SSA17] function tanh(x) is

tanh(x) =
ex − e−x

ex + e−x

Graph of tanh function is shown in Figure 16:
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Figure 16: Graph of tanh Function

Additionally, the layer incorporates L2 regularization [TZ22] with a regu-
larization factor of 0.01 to mitigate the effects of overfitting. L2 regularization
is used to constrain the weights and thus minimize overfitting. The formula for
L2-regularized loss is:

LossL2 = LossOriginal + λ
∑
i

ω2
i

Where:

• λ is the regularization parameter.

• ωi represents each weight in the neural network.

Hidden Layers: Our model includes a single hidden layer (Figure 17) to
capture the complexities and intricacies in the data. This hidden layer has 16
neurons and also employs the tanh activation function. L2 regularization is
applied here as well with a factor of 0.01, consistent with the input layer.

Figure 17: Code for Hidden Layer Formation

Output Layer: The output layer is the final layer in the network, responsible
for producing predictions. In the case of our binary classification problem,
the output layer (Figure 18) consists of a single neuron employing the sigmoid
[PWS+20] activation function.
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Figure 18: Code for Output Layer Formation

Graph of sigmoid function was previously shown in Figure 9. The mathe-
matical expression for the sigmoid function σ(z) is:

σ(z) =
1

1 + e−z

Model Compilation and Training: After defining the layers, the model is
compiled (Figure 19) using the Adam [Zha18] optimization algorithm with a
binary cross-entropy loss function [ZS18], suitable for binary classification prob-
lems.

Figure 19: Code for Compiling the Model

For N data points, the binary cross-entropy loss is often calculated as the
average loss over all data points:

L = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)]

Where:

• y is the true label for a given data point, which is either 0 or 1 in binary
classification.

• ŷ is the predicted label, a number between 0 and 1 outputted by the model.

The model is trained (Figure 20) on the dataset for 1000 epochs with a
validation split of 20% to monitor performance on unseen data.

Figure 20: Code for Model Training

To evaluate the effectiveness of the training process, the training loss is
plotted over the epochs (Figure 21). This plot serves as a valuable tool for
diagnosing the model’s learning behavior.
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Figure 21: Code for Plotting the Training Loss

This architecture was chosen based on preliminary experiments and was
found to deliver robust and reliable performance on the task at hand. Further
details on model evaluation and comparisons with other architectures will be
discussed in subsequent sections of this paper.

3.2 Hyperparameter Tuning

Through training, several parameters of machine learning algorithms are deter-
mined. In addition to that, the majority of machine learning algorithms contain
parameters that must be adjusted before being utilized.

Hyperparameters are the name given to such parameters. In many cir-
cumstances, an algorithm’s performance on a given task is highly affected by
its hyperparameter settings. For achieving best performance, the hyperparam-
eters must be tuned. [WMV20] Hyperparameter tuning refers to the process of
systematically searching for the optimal set of hyperparameters that regulate
the behavior of a machine learning model. Unlike model parameters, which
are learned during training, hyperparameters are not learned from the data but
must be set prior to the training process [RKVR19]. The primary objective is
to fine-tune the machine learning model to achieve the best performance.

In our research, hyperparameter tuning was performed to optimize each
machine learning model for the most accurate predictive performance. We uti-
lized the GridSearchCV [RKVR19] method from the Scikit-learn library to sys-
tematically work through multiple combinations of the different type of hyper-
parameters, cross-validating as it goes to determine which tune gives the best
performance.

3.2.1 Tuning of Support Vector Machines (SVM)

The hyperparameters tuned in SVM are shown below in Table 7:
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Hyperparameter Description Interval

C Regularization parameter
{0.01, 0.1, 0.0, 1, 2, 3, 4, 5, 6,
7, 8, 10, 50, 100}

gamma
Parameter that influences the
shape of the decision bound-
ary

{0.000001, 0.00005, 0.0001,
0.0005, 0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 1, 5, 10}

kernel
Specifies the kernel type to be
used

{‘linear’, ‘poly’, ‘rbf’, ‘sig-
moid’}

Table 7: SVM Hyperparameters

3.2.2 Tuning of Logistic Regression (LR)

The hyperparameters tuned in LR are shown below in Table 8:

Hyperparameter Description Interval

C
Inverse of regularization
strength

{0.01, 0.1, 0.0, 1, 2, 3, 4, 5, 6,
7, 8, 10, 50, 100}

penalty
Used to specify the norm used
in the penalization

{’l1’, ’l2’, ’elasticnet’}

solver
Algorithm to use in the opti-
mization problem

{’newton-cg’, ’lbfgs’, ’liblin-
ear’, ’sag’}

Table 8: LR Hyperparameters

3.2.3 Tuning of K-Nearest Neighbors (k-NN)

The hyperparameters tuned in k-NN are shown below in Table 9.

Hyperparameter Description Interval

n neighbors
Number of neighbors to con-
sider inverse of regularization
strength

list(range(1,30))

leaf size
Inverse of regularization
strength

list(range(1,50))

weights
Weight function used in pre-
diction

{’uniform’,’distance’}

metric Distance metric used {’minkowski’,’euclidean’,’manhattan’}

Table 9: k-NN Hyperparameters

3.2.4 Tuning of Gaussian Naive Bayes (GNB)

The hyperparameter tuned in GNB are shown below in Table 10
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Hyperparameter Description Interval

var smoothing
Used for smoothing the vari-
ance of the features

np.logspace(0,-9, num=100)

Table 10: GNB Hyperparameters

3.2.5 Tuning of Bernoulli Naive Bayes (BNB)

The hyperparameter tuned in BNB is shown below in Table 11:

Hyperparameter Description Interval

alpha Used for additive smoothing
{0.0, 0.01, 0.1, 0.5, 1.0, 1.5, 5,
10}

Table 11: BNB Hyperparameters

3.2.6 Tuning of Random Forest (RF)

The hyperparameters tuned in RF are shown below in Table 12:

Hyperparameter Description Interval

n estimators
The number of trees in the
forest

{25, 50, 100, 150, 200, 300,
1000}

max depth
The maximum depth of each
decision tree

{80, 90, 100, 110}

max features
The number of features to
consider for each split

{2, 3}

min samples leaf
The minimum number of
samples required to be at a
leaf node.

{3, 4, 5}

min samples split
The minimum number of
samples required to split an
internal node.

{8, 10, 12}

Table 12: RF Hyperparameters

3.2.7 Tuning of XGBoost (XG)

The hyperparameters tuned in XGBoost are shown below in Table 13
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Hyperparameter Description Interval

n estimators
The number of boosting
rounds or trees to build

{60, 220, 40}

learning rate
Controls the contribution of
each tree added to the model

{0.1, 0.01, 0.001, 0.05}

max depth Maximum depth per tree {2, 10, 1}

Table 13: XGBoost Hyperparameters

3.3 K-Fold Cross-Validation

We used K-Fold Cross-Validation as part of the model evaluation procedure
to verify the reliability and generalizability of our machine learning models.
This technique provides a comprehensive way to evaluate the performance of a
predictive model and reduces the risk [WY20] of the results being affected by
the initial train/test split.

In K-Fold Cross-Validation, the original dataset is randomly divided into
’K’ equally sized folds (subsets) [AGG+12]. Following that, the model is trained
’K’ times, with ’K-1’ of the folds used for training and the remaining fold used
for testing. This method is continued until each fold has exactly served as the
test set once. The performance metrics are then averaged over the ’K’ folds to
create a single, composite metric that is less sensitive to the dataset’s initial
random splitting [RPL10].

For our study, we chose a 10-fold Cross-Validation, widely considered a
standard and effective choice for balancing both bias and variance in model
evaluation.

Figure 22 represents a 10-fold cross-validation approach. The figure depicts
that the dataset is split into 10 folds or groups, where 9 folds participate in model
training and remaining 1 fold participates in evaluation of the training in each
iteration. In our study, 10-fold cross-validation is employed. Cross-validation is
performed to protect against overfitting in a predictive model.

3.4 Metrics for Evaluation

When evaluating the performance of classification models, the concepts of True
Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN) [ZGCH21] form the basis for many important metrics such as precision,
recall, and accuracy [V+21]. Here’s a brief explanation of each:

• True Positives (TP) are the cases in which the model predicted the positive
class, and the true label was also positive.
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Figure 22: 10-k Cross-Validation [SLDS19]

• True Negatives (TN) are the cases in which the model predicted the neg-
ative class, and the true label was also negative.

• False Positives (FP) are the cases in which the model predicted the positive
class, but the true label was negative.

• False Negatives (FN) are the cases in which the model predicted the neg-
ative class, but the true label was positive. This is often referred to as a
”Type II error.”

3.4.1 Accuracy

Accuracy is the ratio of correctly predicted instances to the total number of
instances. It’s a general indicator of how well the model performs across all
classes.

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Number of Samples

While easy to interpret, accuracy can be misleading in the case of imbal-
anced datasets.

3.4.2 Precision

Precision (also known as the positive predictive value) is the fraction of True
Positives over the sum of True Positives and False Positives. It shows how many
of the items identified as positive are actually positive.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

33



High precision means that false positive errors are low. It is a good measure
to use when the cost of a false positive is high.

3.4.3 Recall

Recall (or Sensitivity or the True Positive Rate) measures the fraction of True
Positives over the sum of True Positives and False Negatives. It shows how
many of the actual positive cases were identified correctly.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

High recall indicates that false negative errors are low. It is a good measure
to use when the cost of a false negative is high.

3.4.4 F1 Score

The F1 Score is the harmonic mean of precision and recall. It provides a balance
between precision and recall and is a good measure to use if you need to seek a
balance between these two metrics.

F1 Score = 2× Precision× Recall

Precision + Recall

The F1 score is particularly useful in contexts where either false positives
or false negatives carry a significant cost.

4 Results and Discussion

We collected the dataset from Kaggle. We applied EDA to the data, in order
to understand its underlying structure and identify patterns, and also potential
anomalies or outliers. We presented a variety of graphs to show the distributions
of the data, and the relations between the features. After EDA, we preprocessed
the data by encoding the categorical features using one-hot encoding and stan-
dardizing the continuous features using standard scaler. Then, we split our
dataset into train, validation, and test subsets.

We tested a variety of non-tree based and tree-based machine learning
classifiers, and a custom ANN on the dataset. We performed hyperparameter
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tuning on most of our classifiers. The optimal set of hyperparameters for each
of the model is shown in Table 14. We used K-Fold Cross-Validation as part of
the models’ evaluation procedure to verify the reliability and generalizability.
All the classifiers are trained and tested using 10-fold cross-validation.

Models Optimal Hyperparameter Values
SVM ‘C‘ value of 50, a ‘gamma‘ value of 0.01 and kernel

type of ‘rbf‘
LR C value of 1, a ‘penalty‘ type of l2, and solver type of

‘lbfgs‘
k-NN ‘n neighbors‘ value of 3, a ‘leaf size‘ value 01, ‘weights‘

type of uniform, and ‘metric‘ type of manhattan
GNB ‘var smoothing‘ value of 0.04328761281083057
BNB ‘alpha‘ value of 0.0
RF ‘n estimators‘ value of 100, a ‘max depth‘ value of 110,

a ‘max features‘ values of 2, a ‘min samples leaf‘ value
of 3, and a ‘min samples split‘ value of 10.

XG ‘n estimators‘ value of 220, a ‘learning rate‘ value of
0.05, and ‘max depth‘ values of 2.

Table 14: Optimal Hyperparameters for Models

Table 15 presents recall, precision, F1 Score, and accuracy for the classifiers.
The maximum accuracy is achieved by the Logistic Regression classifier with
90%. Logistic Regression classifier also has highest F1 score 90% both for the
classes ‘0’ and ‘1’. The highest recall for the class ‘1’ is 88%, which both SVM
and Logistic Regression classifiers have. Both the Logistic Regression and the
ANN holds the maximum precision in class ‘1’ and maximum recall in class ‘0’
which are both 93%. The maximum precision in class ‘0’ which is 87% is shared
by SVM and LR classifiers. From the comparison of different classifiers, we
conclude that SVM and custom ANN classifiers showed overall good accuracy.
However, Logistic Regression achieved the best accuracy which is 90%.

Class Metrics SVM LR k-NN GNB BNB DT RF GB XG ANN
0 Precision 0.87 0.87 0.83 0.81 0.79 0.74 0.81 0.84 0.84 0.84

Recall 0.90 0.93 0.83 0.90 0.90 0.86 0.90 0.90 0.90 0.93
F1 Score 0.88 0.90 0.83 0.85 0.84 0.79 0.85 0.87 0.87 0.89

1 Precision 0.90 0.93 0.84 0.89 0.85 0.89 0.90 0.90 0.90 0.93
Recall 0.88 0.88 0.84 0.81 0.78 0.81 0.84 0.84 0.84 0.84
F1 Score 0.89 0.90 0.84 0.85 0.82 0.85 0.87 0.87 0.87 0.89

Accuracy 0.89 0.90 0.83 0.85 0.83 0.78 0.85 0.87 0.87 0.89

Table 15: Performance Evaluation of The Classifiers

The accuracy of the classifiers before and after hyperparameter tuning is
presented in Table 16 From the results, it is clear that most of the classifiers
(SVM, k-NN, GNG, RF, XG) improved their accuracy with hyperparameter
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Table 16: Accuracy Change After Hyperparameter Tuning

tuning, while the accuracy of Logistic Regression was not changed, and the
accuracy of BNB was a bit decreased.

The accuracy of the classifiers before and after the standardization of the
data is presented in Table 17. It can be seen that most of the classifiers’ (SVM,
BNB, RF, ANN) accuracy increased after the data was standardized, while the
accuracy of GNB was decreased, and the accuracy of DT, GB, XG classifiers
nearly remained unchanged. The SVM classifier and ANN model showed a sig-
nificant increase in terms of accuracy after the standardization. By comparing
results obtained before and after standardization, it is clear that the standard-
ization mostly has a positive impact on the accuracy, and some classifiers show
an accuracy improvement of up to 29%, which is a huge performance improve-
ment.
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Table 17: Accuracy Change After Standardization

5 Conclusion and Future Work

Our study’s initial objective was to provide a comprehensive analysis regarding
prediction of heart disease using a wide range of machine learning algorithms.
Unlike previous research, which frequently focused on individual algorithms,
our work aimed to compare a variety of models, ranging from fundamental ap-
proaches such as Logistic Regression and Support Vector Machines to advanced
techniques such as Artificial Neural Networks (ANN).

Initially, we focused on fully understanding the features in our dataset.
This resulted in the development of efficient data preprocessing methods, such
as feature scaling and encoding, which optimized the data for model training.
We also performed extensive exploratory data analysis to gain a better under-
standing of data characteristics, using graphs and other visual tools to highlight
patterns and distributions.

The performance of various machine learning algorithms on the same dataset
was critically compared in accordance with our main goal. To improve the
performance of these models, hyperparameter tuning and data standardization
were implemented. We also built and evaluated a custom-designed ANN model,
comparing its efficiency to more typical algorithms.

Our findings provide useful information and may serve as a practical guide
for both healthcare practitioners and data scientists interested in using machine
learning to predict heart disease. Our research not only highlights the predictive
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capabilities of various machine learning models, but it also demonstrates the sig-
nificance of each step in the analytical pipeline, from initial data understanding
to final model evaluation.

Our primary objective for the future is to explore the capabilities of Arti-
ficial Neural Networks (ANNs) with more complex architectures. The current
model used in our research is simple, but ANN architectures can be much more
complex, with multiple layers, different activation functions, and different types
of neurons. Incorporating these elements can improve the model’s ability to
capture non-linear relationships and complex patterns in the data. Developing
an effective evaluation strategy becomes critical as we implement these more
advanced techniques. In addition to standard metrics such as accuracy and F1
score, we may investigate using the area under the ROC curve [DG06], which
is known as AUC-ROC [Nar18]. In addition, the created models may be up-
loaded to a server to provide doctors with support and assistance in diagnosing
cardiovascular diseases via an application.
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