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1 Introduction 
A recent report by the World Health Organization (WHO) has included cancer 
in the top 10 causes of death [3]. More alarmingly, data from the same report 
also indicates the rate of patients diagnosed with cancer may double [9]. Cancer 
can be lethal to patients, but its effects can be mitigated if detected and treated 
early [7]. Therefore, it is worthwhile to invest time and research to improve our 
ability to diagnose cancers as early as possible. 

Melanoma is one of the most lethal forms of skin cancer. It occurs in cells 
known as melanocytes, skin cells in the upper layer of skin. Melanocytes pro- 
duce a pigment known as melanin to give the skin it’s color. However, when skin 
is exposed to UV radiation, melanocytes produce more melanin than necessary, 
causing skin damage. Melanoma occurs when UV radiation causes mutations in 
these melanocytes, which leads to unrestrained cellular growth. Figure 1. gives 
a visual difference between benign and malignant melanoma images. By the end 
of 2020, about 196,060 people in the USA will be diagnosed with melanoma, and 
of these more than 100,000 people are expected to be diagnosed with invasive 
(penetrating the epidermis into the skin’s second layer, the dermis) melanoma 
[5],[7]. About 6,850 patients suffering fatally from melanoma are likely to have 
died in 2020 [1]. Unfortunately over the past 40 years, melanoma cases have 
been steadily rising [2]. Amidst this melonomic gloom, the good news is that 
melanoma can be cured through excisions when detected and diagnosed in its 
early stages [14],[12]. At present, the available detection and diagnosis options 
for melanoma are visual inspection, clinical screening, dermoscopic analysis, 
biopsy and histopathological examination of skin lesion. Among all options, 
dermoscopy is the most popular imaging technique. Dermoscopy refers to mi- 
croscopic examination and evaluation of skin lesions. It is typically done with 
every high quality magnifying lens and powerful illumination system (aka Der- 
matoscope [4]). However, dermoscopic images are not easy to interpret for 
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diagnosis. Even with most experienced dermatologists, the evaluation of der- 
moscopic images can be laborious and error prone [13], [8]. The complex visual 
characteristics of skin lesions such as multi-sizes, multi-shapes, fuzzy bound- 
aries, and low contrast when compared to the skin and noise presence such as 
skin hair, oils, air, and bubbles limit even an expert dermatologists’s sensitivity 
to less than 80% [25]. Figure 1. gives a visual feel of some lesion images as clas- 
sified by multiple expert dermatologists into benign and malignant melanoma. 

 

 
Figure 1: Two sets of dermoscopic images. Images on the left column show 
benign cases, while the images on the right show malignant cases 

 
Aforesaid challenges especially motivate the machine learning community to 

design algorithms to automatically diagnose melanoma in dermoscopic images. 
Computer-aided diagnosis (CAD) system automates interpretation of dermo- 
scopic images to diagnose melanoma. This helps in early and successful diag- 
nosis of melanoma, thereby making the treatment effective and reducing the 
mortality rate. Machine learning methods aim to ‘train’ models using labeled 
data (dermoscopic image of benign and malignant melanoma) and then provide 
prognosis on the new dermoscopic images of patients. Recently, a subfield of ma- 
chine learning known as deep learning has shown success in automatic medical 
image interpretation comparable to the level of human specialists. Deep learn- 
ing focuses on the construction of “neural networks”, which comprises multiple 
layers of non-linear functions with coefficients/weights which are derived from 
the training data. These weights are the result of the ‘training’ process and 
hold the knowledge of differentiation between benign and malignant melanoma. 
Artificial Neural Networks (ANNs) were the first type of neural network to 
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demonstrate success in medical imaging classification, including CadE/CadX 
to diagnose chest diseases given radiographs [23], diagnose general cancer given 
tumor and lymphatic node images [22], and diagnose prostate cancer given MRI 
images [16]. Researchers have developed specialized neural networks known as 
convolutional neural (CNN) networks which are designed to model the highly 
structured data present in images. Convolutional neural networks have been 
known for being effectively utilized to diagnose cancers and diseases in the past 
[15]. Some recent examples of using CNNs for medical-imaging related tasks 
include diabetic retinopathy detection which performed on levels comparable 
to ophthalmologists [18], chest X-Ray pathology detection in chest radiographs 
which matched the performance of radiologists [10] , and knee abnormality de- 
tection in MRI scans [11]. Given the recent success of convolutional neural 
networks on a variety of medical imaging tasks, there is a significant opportu- 
nity for research on developing models for other tasks [26]. One of the early 
works using CNN to classify dermoscopic images into benign and malignant, 
with accuracy levels comparable to that of 21 board-certified dermatologists, 
came from Esteval et. al in 2017 [17]. In this research paper, I developed deep 
learning models to classify dermoscopic images of skin lesions. The networks 
were trained and validated on a large dataset of dermoscopic images that were 
labeled by dermatologists as benign or malignant. I discovered that a ResNet 
model with 50 layers achieves an AUROC score of 0.78 on the validation set, 
while an EfficientNet model achieves a AUROC score of 0.90. The model lever- 
ages augmentations and ensembling of multiple smaller models to achieve that 
high performance on the validation set. Finally, I interpreted the model predic- 
tions through the use of Class Activation mappings to highlight where in the 
picture the model considered a possibly malignant tumor existed. 

 

2 Methods 

2.1 Data 
The dataset consisted of 33,126 dermoscopic images in total and was split into 
a training set (25,932 images) to learn model parameters and a validation set 
(7,194 images) to compare models. As shown in Table 1., the training set con- 
sisted of 473 positive (malignant) cases or 1.8 % of the training set. The 25,459 
images remaining were negative (benign) cases or 98.2 % of the training set. 
The validation set consists of 7,194 images. As shown in Table 1, the valida- 
tion set consisted of 111 positive (malignant) cases or 1.6 % of the validation 
set. The 7,083 images remaining were negative (benign) cases or 98.4 % of the 
validation set. Both datasets had the exact same approximate age of 45, with 
the percent of female patients varying from 48.9% in the training set to 45.9% 
in the validation set. All images in the training and validation are in JPEG 
format and were resized to 224 x 224 pixels. 
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 Training Validation 
Positive No (%) 473 (1.8%) 111 (1.6%) 
Negative, No (%) 25,459 (98.2%) 7,083 (98.4%) 
Mean age 45.0 45.0 
% Female 48.9 % 45.9 % 
Total 25,932 7,194 

Table 1: Data statistics across the data splits. 
 
 
 
 

2.2 Convolutional Neural Networks 
Convolutional neural networks are especially effective in machine learning due 
to their ability to leverage the structured format of imagery. Convolutional 
networks are composed of convolutional layers, which use a kernel and stride to 
extract certain features from the image. Conv layers are followed by non-linear 
Rectifier layers (aka ReLU in Figure 2.) which typically remaps the input to 
a manageable ‘range’ (e.g. -1 to +1). Typical CNNs are combinations of the 
three layers (convolution, rectifier, pooling). The final layer of a CNN is a fully- 
connected layer to produce the final output of the network (classification label). 
Certain CNN architectures are more effective for different types of tasks. To 
mitigate overfitting, two candidate models were investigated in this work for 
their relatively small neural network size - ResNet50 [19] and EfficientNet [24]. 
A diagram of the ResNet50 architecture is shown below with Figure 2. and the 
EfficientNet Architecture is shown in Figure 3. 

 

 
Figure 2: Diagram of the ResNet50 Architecture 

 
In essence, the ResNet50 architecture functions by stacking up sets of the 

three layers 50 times [19]. The triplet consists of convolutional layers, normal- 
ization / pooling layers, and rectifier layers. The convolutional layer extracts 
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relationships from the image, the pooling layer aggregates the extracted features, 
the rectifier nonlinearities (ReLU) are applied to capture nonlinear structures 
within the image. One aspect that differentiates ResNet from other CNNs - is 
that it trains to learn the ‘residual signal’, which refers to the difference of a 
triplet’s output with input of the previous triplet. 

 

 
Figure 3: Diagram of EfficientNet Architecture Used 

 
The EfficientNet architecture is composed of layers similar to the ResNet50 

architecture but also efficiently balances the tradeoff	 between network depth 
(number of layers), width (number of channels), and image resolution. It is 8.4 
times smaller and 6.1 times faster than the best convolutional neural network 
and achieves one of the highest accuracies on the ImageNet database, a large 
dataset of natural images which is the most commonly used benchmark for 
assessing convolutional neural network performance 24. 

 
2.3 Training Procedure 
A special training procedure was created to maximize the performance of the 
ResNet50 / EfficientNet models. In order to utilize the advantages of transfer 
learning, both models had weights initialized from a network pre-trained on data 
from ImageNet. Both models used a scheduler that reduced the learning rate 
each time performance on the validation set plateaued, an Adam optimizer, and 
the binary cross entropy loss function. The Adam optimizer was utilized with 
an initial learning rate of 0.001. The scheduler had a patience of 1, a threshold 
of 1 * 10−5 to measure when the validation performance plateaued, and a factor 
of 0.2 to reduce the learning rate by. Each model was trained for a maximum 
of 20 epochs (20 full passes over the training set) with a batch size of 32 and 4 
workers (processors). The following augmentations were applied to each batch 
during training: random horizontal and vertical flips with a probability of 50%, 
random crops of the image, and random rotations of the image. After the 
model completed iteration over the training dataset, the model was directly 
tested on the validation set. The summary metric AUROC was computed for 
each epoch and the 5 models with the highest AUROC score were saved. These 
five models were used to generate an ensemble of models where the average of 
the probabilities predicted by each model was used as the prediction for the 
ensemble, as depicted in Figure 4. Finally, to limit training time and prevent 
overfitting on the training set, early stopping was used which terminates training 
once the marginal gains from training were lower than a specific threshold. 
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Figure 4: A Conceptual Diagram of how melanoma diagnosis is accomplished 
in the model. 

 
2.4 Evaluation Metrics 
I used a variety of performance metrics to evaluate the deep learning models. 
To evaluate the quality of the model probabilities, I computed the receiver op- 
erating characteristic (ROC) curve and precision recall curve (PR) . Then, to 
compress the curves into more comprehensive metrics, the area from the ROC 
and PR curves was computed to get AUROC and AUPRC. The model was pri- 
marily evaluated using the AUROC score, but AUPRC was also measured to 
provide a holistic evaluation of the models. To convert probabilities to binary 
predictions and compute point metrics, I used the threshold which led to the 
highest F1 score on the validation set. After the probabilities were converted 
to binary predictions at the optimal threshold, I computed the precision, which 
measures how many accurate malignant diagnoses were made over all malignant 
diagnoses the model predicted, recall, which measures how many accurate ma- 
lignant diagnosis were made over all test images which were malignant, F1 score 
which is the harmonic mean of precision and recall, and accuracy of the model. 

 
2.5 Model Interpretation 
Once training and testing was complete, I sought to interpret the model pre- 
dictions. In order to accomplish this, I used class activation maps (CAMs, 
Figures 5/6.) to highlight the regions of the image which contribute most to the 
model’s prediction of melanoma. The class activation maps are computed using 
the feature maps right before the global average pooling layer (GAP) is reached, 
where feature map (1 per channel) is multiplied by the weight corresponding 
to the final fully connected layer, and then summed to create the CAM. The 
CAM is a heatmap that overlays the image where temperature/color highlights 
the regions of the image which contribute most to the model’s classification. 
In Figures 5/6, the blue regions highlight areas which contribute more to the 
prediction of melanoma, while purple highlights areas which contribute less. Us- 
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ing these CAMs, especially for false negative / positive diagnosis cases, helped 
me understand possible causes that were derailing the model from an accurate 
prediction. 

 

 
Figure 5: Class activation maps (CAM) of the best model on the validation set. 
The CAM on the left are an accurate diagnosis of benign melanoma, while the 
CAM on the right shows a false diagnosis (the model incorrectly predicted there 
was melanoma). Areas that have higher hues of blue indicate the model has a 
higher confidence that melanoma exists in that part of the image, while areas 
that are more purple indicate lower confidence. 

 
 

 
Figure 6: Class activation maps (CAM) of the best model on the validation set. 
The CAM on the left are an accurate diagnosis of malignant melanoma, while 
the CAM on the right shows a false diagnosis (the model incorrectly predicted 
there wasn’t melanoma). Areas that have higher hues of blue indicate the model 
has a higher confidence that melanoma exists in that part of the image, while 
areas that are more purple indicate lower confidence. 
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3 Results 
 
 

  Point Metrics Summary Metrics 
 Experiment Precision Recall F1 Accuracy AUROC AUPRC 

1 Pretrained 
ResNet50, 
with optimizer 
Adam, no 
early stopping, 
and CrossEn- 
tropyLoss loss 
function 

0.03 0.91 0.06 0.56 0.79 0.05 

2 Pretrained 
ResNet50, 
with optimizer 
Adam, no early 
stopping and 
BinaryCrossEn- 
tropyWithLog- 
its (BCEL) loss 
function 

0.13 0.32 0.19 0.96 0.86 0.15 

3 Pretrained 
ResNet50 with 
optimizer Adam 
and scheduler, 
no early stop- 
ping, and BCEL 
loss 

0.09 0.51 0.15 0.91 0.87 0.11 

4 Pretrained 
ResNet50, with 
optimizer Adam 
and scheduler, 
early stopping, 
and BCEL loss 

0.07 0.71 0.13 0.85 0.88 0.14 

5 Pretrained   Ef- 
ficientNet with 
optimizer Adam 
and scheduler, 
early stopping, 
and BCEL loss 

0.14 0.14 0.04 0.89 0.54 0.02 
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6 Pretrained   Ef- 
ficientNet with 
optimizer Adam 
and scheduler, 
early stopping, 
BCEL loss, and 
ensembling 

0.21 0.20 0.20 0.98 0.87 0.13 

7 Pretrained Ef- 
ficientNet with 
optimizer Adam 
and scheduler, 
early   stopping 
with  increased 
threshold, 
BCEL loss and 
ensembling and 
data   augmen- 
tation (Error 
in generating 
predictions) 

0.42 0.16 0.23 0.98 0.57 0.08 

8 Pretrained    Ef- 
ficientNet with 
optimizer Adam 
and scheduler, 
early stopping 
with high- 
est threshold, 
BCEL loss and 
ensembling 

0.1 0.66 0.28 0.91 0.90 0.17 

Table 2: Performance metrics of the experiments on the validation 
set. 

 
 
 
 

I experimented with a variety of models and training procedures in order 
to investigate their impact on performance, primarily in terms of AUROC.. 
Starting with a ResNet50 model and Experiment 1 metrics as a baseline, the 
loss function was changed to BinaryCrossEntropyWithLogits (BCEL) due to its 
specialty in binary classification, which led to an increase inAUROC score from 
0.79 to 0.86 (Experiment 2). Next, a scheduler was added in order to anneal 
the learning rate (Experiment 3). Although the AUROC score does increase 
from Experiment 2 to 3, the gain is relatively small. In Experiment 4, early 
stopping was added to prevent overfitting on the training set which also led to 
minimal performance gains. In Experiment 5, the ResNet50 model being used 
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was replaced with an EfficientNet model. This caused the AUROC score to 
plummet. In Experiment 6, 5 EfficientNet models were put into an ensemble 
where the predictions would come as the arithmetic mean of the 5 predictions of 
the individual models. This increased AUROC from 0.54 to 0.87. The intention 
for Experiment 7 was to train the model more rigorously by augmenting the 
training set images. Once the bug was fixed, the model outputted the highest 
and final AUROC score at Experiment 8 - 0.9. 

 
4 Discussion 

 

 
Figure 7: ROC curve of best model of the validation set. 

 
In this work, I developed convolutional neural networks for the detection of 

melanoma in dermoscopic images. Two different models, ResNet50 and Ef- 
ficientNet, were investigated together with a variety of training procedures. 
Through each experiment, one important variable was toggled, such as model 
type, loss function, use of scheduler, early stopping, data augmentation, and en- 
sembling. Overall, the key methods used for the greatest gains in AUROC came 
from the use of early stopping and ensembling of the models. Apart from the 
model improvement methods, other techniques such as CAMs / graphs were 
utilized to figure out optimal values for certain variables and to analyze the 
models. 

Major implications of our work lie mainly in the use of multiple techniques 
applied, and the gain of each technique. The set of techniques and their respec- 
tive gains can be used by other researchers in the medical field to prioritize which 
techniques to use to maximize their own models’ AUROC score. A second impli- 
cation lies in the model’s AUROC score. As the dermatologist accuracy of 75% 
[21] has been surpassed by our model’s 91% accuracy and 90% ROC AUROC, 
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Figure 8: PR curve of best model of the validation set. 
 
 

the model proposed has the potential to match or exceed human performance, 
implying it may be viable to assist humans in the detection of melanoma. This 
work also has important limitations which should be considered. First, data only 
came from 6 hospitals (Hospital Cl´ınic de Barcelona, Medical University of Vi- 
enna, Memorial Sloan Kettering Cancer Center, Melanoma Institute Australia, 
The University of Queensland, and the University of Athens Medical School), 
so the model may not be representative of certain populations [6]. As a result, 
the model will likely be less generalizable and over-represent the populations 
from where the dataset originated. Another limitation was the oversimplifi- 
cation of the task. In the case melanoma is classified, the severity must also 
be determined. One metric to determine this is called the Clark Scale, which 
ranks detected melanoma into 5 levels [20]. However in this work, melanoma 
was only classified based on existence, ignoring many nuanced details that are 
important to the diagnosis of cancer. Finally, skin lesions in different parts of 
the body may be treated differently. The models presented in this work do not 
utilize information about where the lesions originated in the body, which may 
be important information for classification. All such known limitations could 
be addressed with help of availability of a variety of data which covers different 
geographies, races, regions of the body, and severity levels of the melanoma. In 
future research, we plan to explore other model architectures, and versions of 
ResNet and EfficientNet which are available in PyTorch. Using K-Fold cross 
validation instead of saving the top 5 models would also be considered in order 
to improve the heterogeneity of models in the ensemble. Finally, generating 
custom augmentations such as inserting obstructions like hairs into the images 
for the training set could also improve the robustness of the model. 
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