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Abstract

Chronic kidney disease is one of the most widespread diseases on Earth,
at any given moment, it is estimated that around 697.5 million people are
diagnosed with CKD. There are 5 stages of CKD, each stage gets progres-
sively worse, until stage 5, where dialysis or a kidney transplant is needed
to maintain life. If detected in the early stages (stage 1-2), treatments can
slow or even stop the progression of CKD. However, detecting early stages
of CKD is very difficult because patients usually do not have symptoms
until stage 4, by then, the kidney’s function is cut in half. In this pa-
per, we demonstrated utilization of data efficient machine learning (ML)
algorithms as Decision Tree, SVM, and Logistic Regression on publicly
available data to predict CKD. Further interpretation of the algorithms
revealed significance of certain attributes (e.g. blood pressure, age) and
we were able to get 95 percent + accuracy using certain features about
patients.

1 Introduction

The kidneys are located to the rear of the abdominal cavity on either side
of the spine. Their main functions are to regulate extracellular fluid volume,
regulate ion concentrations and pH levels in the body, excrete waste and toxins,
and produce hormones (regulates blood pressure levels). Every day, the kidney
filters roughly 200 liters of blood and also produces roughly 1-2 liters of urine.
Chronic kidney disease (known as CKD) is a disease that gradually weakens
the kidneys to the point that wastes can build up leading to complications like
high blood pressure, anemia, weak bones, and nerve damage. CKD may lead to
kidney failure, which requires dialysis or a kidney transplant to maintain life.
Each year 37 million Americans suffer from CKD; it is estimated that there are
697.5 million cases of CKD in the world as of 2017 (9.1 percent of the world
population). Early detection can substantially decrease the damage done to the
kidneys. However, CKD is oftentimes asymptomatic in early stages [Web17].
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When determining the severity of a patient’s CKD, doctors will test the
patient’s blood for creatinine, a waste product in blood (eGRF). There are 5
stages of CKD and depending on the results, the patient will fall into 1 of the
5 stages (1 is mild kidney disease and 5 is kidney failure) [ea07]. A complete
blood count (CBC) is a set of tests that provide information about the cells in
a person’s blood. A CBC shows the counts of red blood cells, white blood cells,
and platelets, the concentration of hemoglobin, and the hematocrit (the percent
of red blood cells in blood). Both the CBC and the creatinine test are used to
diagnose CKD. However, during an annual doctor’s checkup, these tests are
rarely done unless the patient shows symptoms of CKD or has a family history
of CKD. Unfortunately, CKD is oftentimes asymptomatic in early stages up until
stage 4, at that point, the kidney’s functions have been cut in half [ea03] [Atk05].

Early detection and early treatment are essential for CKD because stage 4
CKD is one stage away from kidney failure and the implementation of dialysis
or even worse, a kidney transplant. Blood tests and creatinine tests are only
done if there are reasons to believe a patient has some sort of kidney disease,
but CKD in early stages is often asymptomatic and patients will be oblivious
of their condition. This is why we have to use the data in doctor’s office to the
best of our abilities. During the doctor’s visit, doctors may test for patients:
blood pressure, sugar intake, normal or abnormal amounts of red blood cells
and pus cells, blood glucose random, etc.

The data from a simple doctor’s visit might seem meaningless to the human
eye, but utilizing the data efficient machine learning algorithms, we might be
able to identify signals for early-stage detection of kidney disease. The recent
increase in use of ML algorithms demonstrated the applications of ML models
ranging from drug discovery to agriculture to disease detection. If the algorithm
suggests that the patient may have kidney disease, now we have a reason to
believe and run further tests like CBC and creatinine test to tell us definitively.
If we can predict kidney disease way before we show any symptoms, therefore,
we can treat it at an earlier stage and prevent it from worsening [Bre21]. Here,
we demonstrated that using different levels of datasets (i.e. from 6 attributes to
24 attributes) depending on the availability of the data for the patient, showing
flexibility of our workflow, we utilized several classification algorithms for above
90 percent accuracy in our predictions, even on a dataset that is easily accessible
at home. Further model interpretations such as confusion matrix revealed the
individual performance of the models.

2 Methodology

2.1 Data Preparation and Workflow

Our objective in this project is not to build a model with perfect attributes to
predict CKD while still achieving high accuracy. Instead, it is to develop a gen-
eralizable and flexible workflow that could reliably predict CKD with the least
number of attributes. The dataset we obtained from UCI repository [Rub15] was
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not clean and complete. Several missing attributes, duplicates, and comments
were found in the raw dataset. This required several manual and automated
steps of data pre-processing.

The original dataset was from the UCI machine learning repository and the
data was collected in India. The dataset had 280 rows and 25 attributes, 174
patients had CKD and 106 patients did not have CKD, showing enough diversity
to avoid biases towards a certain class in the data (Fig. 2). The main issues
were that some data points were missing, some attributes were too correlated
to CKD that the implementation of machine learning would have been biased.
There were two different data types - some data points were nominal (normal,
abnormal, good, poor, yes, no, etc.), while others were numerical (1, 2, 3, 4,
etc.). For the code to work, all data types must be in the same format, meaning
we must convert the nominal data into numerical data. In the dataset we were
able to manually locate the nominal data and replace it with numbers using the
find and replace tool. For example, nominal data like good and poor can be
replaced with numbers like 1 and 2.

Figure 1: Workflow of ML-based disease prediction.

2.2 Filtering and Selection

Next, to filter out the attributes that give tell-tale signs of CKD, we created a
table, gave each attribute a difficulty rating, and explained why it deserved that
rating. Afterwards, we discovered that the attributes with the highest difficulty
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rating were also the ones that had too much correlation to kidney disease; it
would not be practical as a way to predict CKD. We filtered 25 attributes into
9. Finally, to make sure there were no gaps in the data, we ran a for loop to
remove any row that had a gap in it, therefore, the cleaned dataset no longer had
any gaps, the original dataset had 280 rows and after cleaning it, the cleaned
dataset had 147 rows. The objective is to be able to accurately classify if a
patient has CKD with the dataset, which is why we need a model that will be
able to classify CKD in two categories, CKD and notCKD.

Figure 2: Data distribution across different attributes (bp: blood pressure;
hemo: hemoglobin; bgr: blood glucose random) to confirm a diverse data with-
out a significant bias towards a certain attribute range.

2.3 Machine Learning Algorithms

2.3.1 Decision Tree

Decision Tree is a machine learning algorithm that creates classification models
that form a tree structure. Similar to how the human mind makes decisions,
Decision Tree breaks down a more complicated dataset and evaluates in smaller
subsets. Each subset leads to an unique subset, until the complicated dataset
is fully broken down. The split criteria in a tree (i.e. nod) can be decided using
either gini or entropy model hyperparameter. In both cases, the objective of
the model is to maximize the information gain after split (i.e. achieve better
separation of classes). We also set the max-depth hyperparameter to 10 to give
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enough flexibility, but also avoiding model overfitting. Afterwards with testing
data, we can run it through the Decision Tree model that was built on the
training data to predict the new data.

2.3.2 Support Vector Machine (SVM)

Support Vector Machine is a model to solve classification problems by creating
a line or hyperplane which separates the data into classes. Sometimes data may
look impossible to separate the classes with only one line, but kernel hyperpa-
rameters such as linear, poly, and rbf can transfer the data into higher dimension
spaces. In our workflow, we implemented all three kernels and compared their
performances (Figure 3). Only then will the hyperplane be able to separate the
data into different classes.

2.3.3 Logistic Regression

Logistic Regression is a machine learning algorithm used for classification. Lo-
gistic Regression fits a sigmoid function to the data; the sigmoid function exists
only between 0 and 1 and observes a discrete set of classes (CKD and not CKD).
Moreover, the sigmoid function can tell the probability a patient has CKD based
on the various attributes we assign to the x variable, which shows the confidence
in our predictions. For instance, a patient with 95 percent confidence of having
a disease would surely need urgent testing, while a prediction with 60 percent
probability would need to repeat the test.

2.4 Feature Scaling and Train Test Split

When we model a data, we need a certain part of the data, usually 70-80 percent
to be used for training an ML model and the rest (i.e. test or a holdout data) to
validate our prediction on a dataset the model has not seen before. This is where
the train-test-split comes in handy. This technique starts with taking a dataset
and splitting it into 2 subsets (train and test). The train dataset is used to fit the
machine learning model and it is tasked to find a pattern or correlation between
the data. The knowledge from the train dataset is then applied to the test data
to create a prediction. That prediction is then compared to the actual result to
determine the accuracy, precision, etc. This paper used 80 percent train data
and 20 percent test data. Imagine a game of Wheel of Fortune and 80 percent
of the phrase has already been filled in, it would be quite easy to presume the
other 20 percent just by intuition. The same can be said for the train-test-split
technique, the purpose is not to use anecdotal evidence (bias) from the train
data to predict the test data. To eliminate the bias, feature scaling is applied
to train-test split so that each feature contributes a proportionate amount to
the prediction.
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2.5 Evaluation of Different Data Formatting

The original dataset had many nominal attributes that had to be converted into
numerical data. During this process, for all attributes excluding classification,
the nominal data that was positive (good appetite, normal red blood cell, etc.)
was replaced with 1, while all negative data (cad and dm presence, abnormal
pus cell, etc.) would be replaced with 2. Likewise, CKD was replaced with 0
and notCKD was replaced with 1. To understand the ML algorithms better,
we wanted to see if changing all nominal data to 0 and 1 vs 1 and 2 exclusively,
would alter the results of the classification. After changing all the nominal
attributes to either 0 and 1 or 1 and 2, we run the same 3 ML algorithms and
the results are the exact same. All of the confusion matrices were also the
same, meaning regardless of what number we set the variables to, the model
still correctly identified the same points, demonstrating flexibility of the ML
algorithms on different data formatting that can be used to describe nominal
(categorical) data.

Figure 3: Summary of attributes from the original dataset, their description,
their format, and the difficult level of obtaining the attributes.
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3 Results and Discussion

Running the model with the cleaned dataset with 25 attributes resulted in a per-
fect prediction across all models. Using this dataset would not give an accurate
representation of the machine learning model, rather it shows that the attributes
are too correlated with the classification, learning to model bias. Moving for-
ward, all attributes rated a “Hard” will be discarded, as these attributes show
too much correlation to CKD presence.

The original dataset had 24 attributes, but many were difficult to obtain
because some attributes required lab tests which costs both money and time.
The idea of building a machine learning model is to make it as convenient
and quick as possible without having to spend money. Some attributes in this
dataset defeat the purpose of a machine learning model because some of the
tests used to get the attributes are the same tests doctors use to diagnose CKD
as given with some attributes with df-moderate results on Figure 4. This is why
we narrowed down 24 attributes to 6 attributes in df-easy.

The attributes include age, blood pressure, sugar level, red blood cell, pus
cell, and appetite, which all can be tested during a regular doctor’s office visit.
The original dataset had a lot of gaps, to get rid of the gaps, we had to delete
all the rows that had a gap in it. This leaves us with a complete dataset without
any gaps; after getting rid of all the gaps in df-easy, there were 147 remaining
rows. But the original dataset only had 107 rows after we cleaned it, that means
that a lot of data from the attributes rated as moderate or hard were difficult
to get. As we can see from the results, the 6 attributes that were the easiest to
get still had good accuracy and precision across all three models. This result
and workflow show that even with an easily accessible data we can detect CKD
presence with high accuracy and precision using ML algorithms.

3.1 Performance Evaluation

The metrics used to evaluate different models and hyperparameters are given in
Figure 4. Given the objective is to classify whether a patient would show CKD
symptoms, we used classification metrics as accuracy, precision, f1-score, and
recall. The reason to provide multiple evaluation metrics is to give flexibility
to evaluate different outcomes depending on the sensitivity of misdiagnosis for
different diseases.
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Figure 4: ML models and hyperparameters used to achieve the results.

Results on Figure 4 show the model hyperparameters and model accuracy,
recall, precision, and f-1 score for different models and different datasets. Using
the easily available 6 attributes in the df-easy dataset, we can achieve up to
97 percent accuracy in predicting CKD presence in the patient data. This was
achieved both with Decision Tree, SVM model (using linear kernel), and Logis-
tic Regression model. Moreover, as given in the next section, we can interpret
the model results using feature-importance- in Decision Tree, which shows the
contribution of different attributes to the final outcome. In our case, we found
that pus cell attribute had the most important contribution in predicting CKD
presence. Next two attributes were blood pressure and sugar or appetite level
depending on the model iteration. Given the appetite values are subjective
based on the individual, there is a higher confidence in the accuracy of sugar
level in the patient. This was followed by red blood cell count and age. Fur-
thermore, in the case of Logistic Regression, predict-proba gives the probability
of the predicted result. This is an important feature since a prediction with 95
percent vs 60 percent confidence interval would not be the same, even though
the prediction would result in the same class. While 95 percent confidence in
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the prediction accuracy can be trusted, 60 percent confidence level would re-
quire taking the test again to further validate the model prediction results in
the patient.

As mentioned in the beginning of Results and Discussion, some attributes
are highly correlated with the CKD presence and some of them are the tests
taken to predict CKD. Even after removing the aforementioned attributes, we
still see a high correlation for the case of df-moderate, which includes attributes
that have the accessibility level of easy and moderate (Appendix). As given in
Figure 4 for df-moderate, we achieve 100 percent prediction accuracy in SVM
(both for linear and rbf kernels) and with Logistic Regression, probably due
to the presence of highly correlated attributes. One surprising result from df-
moderate is 95 percent accuracy using Decision Tree. This is probably due to the
nature of the model where the model predicts the outcome using one feature at
a time and sequentially choosing the features. This makes 100 percent accuracy
difficult unless the split at all the trees are fully accurate.

3.2 Bridging the Gap Between ML Results and Medical
Knowledge.

Looking at the feature importance table with df-moderate, the two most impor-
tant features are Albumin and Hypertension. The rest of the features contribute
an insignificant amount to the decision making of the model. Unsurprisingly,
the two most important features are also rated a moderate which means that
both features are relatively hard to obtain. Albumin is a protein found in blood,
a healthy kidney does not let Albumin pass into urine. An increase in Albumin
levels directly correlates with an increase in probability of CKD. Hypertension
is prevalent in many cases of CKD and it is reported that 85 percent to 95 per-
cent of all patients with CKD have hypertension. Besides the highly-correlated
albumin level and hypertension for df-moderate, we see that pus cell, build-up
of dead white blood cells that can be obtained using a dipstick at home, has
the highest importance in df-easy dataset. Not surprisingly, this is followed by
blood pressure and sugar levels. The next attributes were red blood cell and age.
The sequence of selected features might not be directly correlated, meaning it
is the combination of attributes that lead to the final prediction, not individual
attributes themselves (to avoid highly correlated attributes). Furthermore, we
can also see the df-easy and df-12 (df-easy with 1 and 2 data formatting) had
a tendency to choose false negatives, meaning it often identified CKD cases as
not CKD. On the other hand, df-01 (df-easy with 0 and 1 data formatting) had
a tendency towards false positives, meaning the CKD patients were often not
detected. This is important to know as it will help decide whether certain tests
need repeating or further investigation to confirm the case.
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Figure 5: Feature importance of Decision Tree for different datasets.

4 Conclusion

Using several machine learning algorithms and a generalizable workflow we de-
veloped, the prediction of CKD using preliminary data was possible and actually
very practical as the results (accuracy, precision, recall, etc.) were high. We
demonstrated 95 percent + using different models and model hyperparameters.
We also demonstrated the flexibility of our workflow in terms of adjusting num-
ber of attributes, dataset size, and choice of the algorithm. We need to note that
the data was collected exclusively in India and the data may vary from region
to region. To improve the model, data should be gathered from all across the
world and should be solely in the attributes categorized as easy. If successful,
hospitals from all across the world can adopt these models and predict early
stages of CKD, reducing the risk of severe stages of CKD to millions of people.
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